

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyudev 0.18.1 documentation

pyudev – pure Python libudev [http://www.freedesktop.org/software/systemd/man/libudev.html] binding

pyudev 0.18.1 (Changelog, installation)

pyudev is a LGPL licenced, pure Python [http://www.python.org/] 2/3 binding to
libudev [http://www.freedesktop.org/software/systemd/man/libudev.html], the device and hardware management and information library of Linux.

Almost the complete libudev [http://www.freedesktop.org/software/systemd/man/libudev.html] functionality is exposed. You can:

	Enumerate devices, filtered by specific criteria (pyudev.Context)

	Query device information, properties and attributes,

	Monitor devices, both synchronously and asynchronously with background
threads, or within the event loops of Qt (pyudev.pyqt4,
pyudev.pyside), glib (pyudev.glib) and wxPython
(pyudev.wx).

Documentation

Thanks to the power of libudev [http://www.freedesktop.org/software/systemd/man/libudev.html], usage of pyudev is very simple. Getting the
labels of all partitions just takes a few lines:

>>> import pyudev
>>> context = pyudev.Context()
>>> for device in context.list_devices(subsystem='block', DEVTYPE='partition'):
... print(device.get('ID_FS_LABEL', 'unlabeled partition'))
...
boot
swap
system

A user guide gives an introduction into common operations and concepts of
pyudev, the API documentation provides a detailed reference:

	Installation
	Python versions and implementations

	Dependencies

	Installation from Cheeseshop

	Installation from source code

	User guide
	Getting started

	A note on versioning

	Enumerating devices

	Accessing individual devices directly

	Querying device information

	Examing the device hierarchy

	Monitoring devices

	API documentation
	pyudev - libudev binding

	pyudev.pyqt4 – PyQt4_ integration

	pyudev.pyqt5 – PyQt5 integration

	pyudev.pyside – PySide_ integration

	pyudev.glib – Glib/Gtk 2 integration

	pyudev.wx – wxPython integration

Support

Please report issues, bugs and questions to the issue tracker [https://github.com/lunaryorn/pyudev/issues], but respect
the following guidelines:

	Check that the issue has not already been reported.

	Check that the issue is not already fixed in the master branch.

	Open issues with clear title and a detailed description in grammatically
correct, complete sentences.

	Include the Python version and the udev version (see udevadm --version) in
the description of your issue.

Development

The source code is hosted on GitHub [https://github.com/lunaryorn/pyudev]:

git clone https://github.com/lunaryorn/pyudev.git

If you want to contribute to pyudev, please read the guidelines for
contributions and the testsuite documentation.

	Contribute

	Testsuite documentation
	Test running

	plugins – Testsuite plugins

Endorsements

If you’re using pyudev and want to say something about it please add yourself
to the endorsements page.

	pyudev Users

Other reading

	Changelog

	Licencing

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

Installation

Python versions and implementations

pyudev supports CPython from 2.6 up to the latest Python 3 release, and PyPy
1.5. Jython may work, too, but is not tested. Generally any Python
implementation compatible with CPython 2.6 should work.

Dependencies

pyudev needs libudev 151 and newer, earlier versions of libudev as found on
dated Linux systems may work, but are not tested and not officially supported.
It is written in pure Python based on ctypes [http://docs.python.org/library/ctypes.html#module-ctypes], so no compilers or headers
are required for installation.

To use any of the toolkit integration modules. the corresponding toolkit must be
available, but no toolkit is required during installation.

Installation from Cheeseshop

Install pyudev from the Cheeseshop [http://pypi.python.org/pypi/pyudev] with pip [http://www.pip-installer.org/]:

pip install pyudev

Installation from source code

Close the public repository:

git clone https://github.com/lunaryorn/pyudev.git

Or download tarball [https://github.com/lunaryorn/pyudev/tarball/master]:

curl -OL https://github.com/lunaryorn/pyudev/tarball/master

Then install pyudev from the source code tree:

python setup.py install

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

User guide

This guide gives an introduction in how to use pyudev for common operations
like device enumeration or monitoring:

Contents

	User guide
	Getting started

	A note on versioning

	Enumerating devices

	Accessing individual devices directly

	Querying device information

	Examing the device hierarchy

	Monitoring devices
	Synchronous monitoring

	Asynchronous monitoring

	GUI toolkit integration

A detailled reference is provided in the API documentation.

Getting started

Import pyudev and verify that you’re using the latest version:

>>> import pyudev
>>> pyudev.__version__
u'0.16'
>>> pyudev.udev_version()
181

This prints the version of pyudev itself and of the underlying libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/].

A note on versioning

pyudev supports libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/] 151 or newer, but still tries to cover the most recent
libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/] API completely. If you are using older libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/] releases, some
functionality of pyudev may be unavailable, simply because libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/] is too old
to support a specific feature. Whenever this is the case, the minimum required
version of udev is noted in the documentation (see
Device.is_initialized for an example). If no version is specified for
an attribute or a method, it is available on all supported libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/] versions.
You can check the version of the underlying libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/] with
pyudev.udev_version().

Enumerating devices

A common use case is to enumerate available devices, or a subset thereof. But
before you can do anything with pyudev, you need to establish a “connection” to
the udev device database first. This connection is represented by a library
Context:

>>> context = pyudev.Context()

The Context is the central object of pyudev and libudev [http://www.kernel.org/pub/linux/utils/kernel/hotplug/libudev/]. You will
need a Context object for almost anything in pyudev. With the
context you can now enumerate the available devices:

>>> for device in context.list_devices():
... device
...
Device(u'/sys/devices/LNXSYSTM:00')
Device(u'/sys/devices/LNXSYSTM:00/LNXCPU:00')
Device(u'/sys/devices/LNXSYSTM:00/LNXCPU:01')
...

By default, list_devices() yields all devices available on the system
as Device objects, but you can filter the list of devices with keyword
arguments to enumerate all available partitions for example:

>>> for device in context.list_devices(subsystem='block', DEVTYPE='partition'):
... print(device)
...
Device(u'/sys/devices/pci0000:00/0000:00:0d.0/host2/target2:0:0/2:0:0:0/block/sda/sda1')
Device(u'/sys/devices/pci0000:00/0000:00:0d.0/host2/target2:0:0/2:0:0:0/block/sda/sda2')
Device(u'/sys/devices/pci0000:00/0000:00:0d.0/host2/target2:0:0/2:0:0:0/block/sda/sda3')

The choice of the right filters depends on the use case and generally requires
some knowledge about how udev classifies and categorizes devices. This is out
of the scope of this guide. Poke around in /sys/ to get a feeling for the
udev-way of device handling, read the udev documentation or one of the
tutorials in the net.

The keyword arguments of list_devices() provide the most common filter
operations. You can apply other, less common filters by calling one of the
match_* methods on the Enumerator returned by of
list_devices().

Accessing individual devices directly

If you just need a single specific Device, you don’t need to enumerate
all devices with a specific filter criterion. Instead, you can directly create
Device objects from a device path (Devices.from_path()), by
from a subsystem and device name (Devices.from_name()) or from a device
file (Devices.from_device_file()). The following code gets the
Device object for the first hard disc in three different ways:

>>> pyudev.Devices.from_path(context, '/sys/block/sda')
Device(u'/sys/devices/pci0000:00/0000:00:0d.0/host2/target2:0:0/2:0:0:0/block/sda')
>>> pyudev.Devices.from_name(context, 'block', 'sda')
Device(u'/sys/devices/pci0000:00/0000:00:0d.0/host2/target2:0:0/2:0:0:0/block/sda')
>>> pyudev.Devices.from_device_file(context, '/dev/sda')
Device(u'/sys/devices/pci0000:00/0000:00:0d.0/host2/target2:0:0/2:0:0:0/block/sda')

As you can see, you need to pass a Context to both methods as
reference to the udev database from which to retrieve information about the
device.

Note

The Device objects created in the above example refer to the same
device. Consequently, they are considered equal:

>>> pyudev.Devices.from_path(context, '/sys/block/sda') == pyudev.Devices.from_name(context, 'block', 'sda')
True

Whereas Device objects referring to different devices are unequal:

>>> pyudev.Devices.from_name(context, 'block', 'sda') == pyudev.Devices.from_name(context, 'block', 'sda1')
False

Querying device information

As you’ve seen, Device represents a device in the udev database. Each
such device has a set of “device properties” (not to be confused with Python
properties as created by property()!) that describe the capabilities
and features of this device as well as its relationship to other devices.

Common device properties are also available as properties of a Device
object. For instance, you can directly query the device_node and the
device_type of block devices:

>>> for device in context.list_devices(subsystem='block'):
... print('{0} ({1})'.format(device.device_node, device.device_type))
...
/dev/sr0 (disk)
/dev/sda (disk)
/dev/sda1 (partition)
/dev/sda2 (partition)
/dev/sda3 (partition)

For all other properties, Device provides a dictionary-like interface
to directly access the device properties. You’ll get the same information as
with the generic properties:

>>> for device in context.list_devices(subsystem='block'):
... print('{0} ({1})'.format(device['DEVNAME'], device['DEVTYPE']))
...
/dev/sr0 (disk)
/dev/sda (disk)
/dev/sda1 (partition)
/dev/sda2 (partition)
/dev/sda3 (partition)

Warning

When filtering devices, you have to use the device property names. The
names of corresponding properties of Device will generally not
work. Compare the following two statements:

>>> [device.device_node for device in context.list_devices(subsystem='block', DEVTYPE='partition')]
[u'/dev/sda1', u'/dev/sda2', u'/dev/sda3']
>>> [device.device_node for device in context.list_devices(subsystem='block', device_type='partition')]
[]

But you can also query many device properties that are not available as Python
properties on the Device object with a convenient mapping interface,
like the filesystem type. Device provides a convenient mapping
interface for this purpose:

>>> for device in context.list_devices(subsystem='block', DEVTYPE='partition'):
... print('{0} ({1})'.format(device.device_node, device.get('ID_FS_TYPE')))
...
/dev/sda1 (ext3)
/dev/sda2 (swap)
/dev/sda3 (ext4)

Note

Such device specific properties may not be available on devices. Either use
get() to specify default values for missing properties, or be prepared
to catch KeyError [http://docs.python.org/library/exceptions.html#exceptions.KeyError].

Most device properties are computed by udev rules from the driver- and
device-specific “device attributes”. The Device.attributes mapping
gives you access to these attributes, but generally you should not need these.
Use the device properties whenever possible.

Examing the device hierarchy

A Device is part of a device hierarchy, and can have a
parent device that more or less resembles the physical
relationship between devices. For instance, the parent of
partition devices is a Device object that represents the disc the
partition is located on:

>>> for device in context.list_devices(subsystem='block', DEVTYPE='partition'):
... print('{0} is located on {1}'.format(device.device_node, device.parent.device_node))
...
/dev/sda1 is located on /dev/sda
/dev/sda2 is located on /dev/sda
/dev/sda3 is located on /dev/sda

Generally, you should not rely on the direct parent-child relationship between
two devices. Instead of accessing the parent directly, search for a parent
within a specific subsystem, e.g. for the parent block device, with
find_parent():

>>> for device in context.list_devices(subsystem='block', DEVTYPE='partition'):
... print('{0} is located on {1}'.format(device.device_node, device.find_parent('block').device_node))
...
/dev/sda1 is located on /dev/sda
/dev/sda2 is located on /dev/sda
/dev/sda3 is located on /dev/sda

This also save you the tedious work of traversing the device tree manually, if
you are interested in grand parents, like the name of the PCI slot of the SCSI
or IDE controller of the disc that contains a partition:

>>> for device in context.list_devices(subsystem='block', DEVTYPE='partition'):
... print('{0} attached to PCI slot {1}'.format(device.device_node, device.find_parent('pci')['PCI_SLOT_NAME']))
...
/dev/sda1 attached to PCI slot 0000:00:0d.0
/dev/sda2 attached to PCI slot 0000:00:0d.0
/dev/sda3 attached to PCI slot 0000:00:0d.0

Monitoring devices

Synchronous monitoring

The Linux kernel emits events whenever devices are added, removed (e.g. a USB
stick was plugged or unplugged) or have their attributes changed (e.g. the
charge level of the battery changed). With pyudev.Monitor you can
react on such events, for example to react on added or removed mountable
filesystems:

>>> monitor = pyudev.Monitor.from_netlink(context)
>>> monitor.filter_by('block')
>>> for device in iter(monitor.poll, None):
... if 'ID_FS_TYPE' in device:
... print('{0} partition {1}'.format(action, device.get('ID_FS_LABEL')))
...
add partition MULTIBOOT
remove partition MULTIBOOT

After construction of a monitor, you can install an event filter on the monitor
using filter_by(). In the above example only events from the
block subsystem are handled.

Note

Always prefer filter_by() and
filter_by_tag() over manually filtering devices (e.g. by
device.subsystem == 'block' or tag in device.tags). These methods
install the filter on the kernel side. A process waiting for events is
thus only woken up for events that match these filters. This is much nicer
in terms of power consumption and system load than executing filters in the
process itself.

Eventually, you can receive events from the monitor. As you can see, a
Monitor is iterable and synchronously yields occurred events. If you
iterate over a Monitor, you will synchronously receive events in an
endless loop, until you raise an exception, or break the loop.

This is the quick and dirty way of monitoring, suitable for small scripts or
quick experiments. In most cases however, simply iterating over the monitor is
not sufficient, because it blocks the main thread, and can only be stopped if
an event occurs (otherwise the loop is not entered and you have no chance to
break it).

Asynchronous monitoring

For such use cases, pyudev provides asynchronous monitoring with
MonitorObserver. You can use it to log added and removed mountable
filesystems to a file, for example:

>>> monitor = pyudev.Monitor.from_netlink(context)
>>> monitor.filter_by('block')
>>> def log_event(action, device):
... if 'ID_FS_TYPE' in device:
... with open('filesystems.log', 'a+') as stream:
... print('{0} - {1}'.format(action, device.get('ID_FS_LABEL')), file=stream)
...
>>> observer = pyudev.MonitorObserver(monitor, log_event)
>>> observer.start()

The observer gets an event handler (log_event() in this case) which is
asynchronously invoked on every event emitted by the underlying monitor
after the observer has been started using start() [http://docs.python.org/library/threading.html#threading.Thread.start].

Warning

The callback is invoked from a different thread than the one in which the
observer was created. Be sure to protect access to shared resource
properly when you access them from the callback (e.g. by locking).

The observer can be stopped at any moment using stop()`():

>>> observer.stop()

Warning

Do not call stop() from the event handler,
neither directly nor indirectly. Use send_stop()
if you need to stop monitoring from inside the event handler.

GUI toolkit integration

If you’re using a GUI toolkit, you already have the event system of the GUI
toolkit at hand. pyudev provides observer classes that seamlessly integration
in the event system of the GUI toolkit and relieve you from caring with
synchronisation issues that would occur with thread-based monitoring as
implemented by MonitorObserver.

pyudev supports all major GUI toolkits available for Python:

	Qt [http://qt.io/developers/] 5 using pyudev.pyqt5

	Qt [http://qt.io/developers/] 4 using pyudev.pyqt4 for the PyQt4 [https://riverbankcomputing.co.uk/software/pyqt/intro] binding or pyudev.pyside
for the PySide [http://wiki.qt.io/PySide] binding

	PyGtk [http://www.pygtk.org/] 2 using pyudev.glib

	wxWidgets [http://wxwidgets.org] and wxPython [http://www.wxpython.org] using pyudev.wx

Each of these modules provides an observer class that observers the monitor
asynchronously and emits proper signals upon device events.

For instance, the above example would look like this in a PySide [http://wiki.qt.io/PySide] application:

>>> from pyudev.pyside import QUDevMonitorObserver
>>> monitor = pyudev.Monitor.from_netlink(context)
>>> observer = QUDevMonitorObserver(monitor)
>>> observer.deviceEvent.connect(log_event)
>>> monitor.start()

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

API documentation

This document provides API reference documentation for pyudev. Refer to the
User guide for an introduction into pyudev.

	pyudev
	The Context provides the connection to the udev device database and enumerates devices.

	pyudev.pyqt4
	

	pyudev.pyqt5
	

	pyudev.pyside
	

	pyudev.glib
	MonitorObserver integrates device monitoring into the Glib

	pyudev.wx
	MonitorObserver integrates device monitoring into the wxPython_

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	API documentation

pyudev - libudev binding

A binding to libudev.

The Context provides the connection to the udev device database
and enumerates devices. Individual devices are represented by the
Device class.

Device monitoring is provided by Monitor and
MonitorObserver. With pyudev.pyqt4, pyudev.pyside,
pyudev.glib and pyudev.wx device monitoring can be integrated
into the event loop of various GUI toolkits.

Version information

	
pyudev.__version__

	The version of pyudev as string. This string contains a major and a
minor version number, and optionally a revision in the form
major.minor.revision. As said, the revision part is optional and
may not be present.

This attribute is mainly intended for display purposes, use
__version_info__ to check the version of pyudev in source
code.

	
pyudev.__version_info__

	The version of pyudev as tuple of integers. This tuple contains a
major and a minor number, and optionally a revision number in the form
(major, minor, revision). As said, the revision component is
optional and may not be present.

New in version 0.10.

	
pyudev.udev_version()

	Get the version of the underlying udev library.

udev doesn’t use a standard major-minor versioning scheme, but instead
labels releases with a single consecutive number. Consequently, the
version number returned by this function is a single integer, and not a
tuple (like for instance the interpreter version in
sys.version_info [http://docs.python.org/library/sys.html#sys.version_info]).

As libudev itself does not provide a function to query the version number,
this function calls the udevadm utilitiy, so be prepared to catch
EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError] and
CalledProcessError [http://docs.python.org/library/subprocess.html#subprocess.CalledProcessError] if you call this function.

Return the version number as single integer. Raise
ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError], if the version number retrieved from udev
could not be converted to an integer. Raise
EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError], if udevadm was not found, or could
not be executed. Raise subprocess.CalledProcessError [http://docs.python.org/library/subprocess.html#subprocess.CalledProcessError], if
udevadm returned a non-zero exit code. On Python 2.7 or newer, the
output attribute of this exception is correctly set.

New in version 0.8.

Context – UDev database context

	
class pyudev.Context

	A device database connection.

This class represents a connection to the udev device database, and is
really the central object to access udev. You need an instance of this
class for almost anything else in pyudev.

This class itself gives access to various udev configuration data (e.g.
sys_path, device_path), and provides device enumeration
(list_devices()).

Instances of this class can directly be given as udev * to functions
wrapped through ctypes [http://docs.python.org/library/ctypes.html#module-ctypes].

	
__init__()

	Create a new context.

	
sys_path

	The sysfs mount point defaulting to /sys' as unicode string.

	
device_path

	The device directory path defaulting to /dev as unicode string.

	
run_path

	The run runtime directory path defaulting to /run as unicode
string.

Required udev version: 167

New in version 0.10.

	
log_priority

	The logging priority of the interal logging facitility of udev as
integer with a standard syslog [http://docs.python.org/library/syslog.html#module-syslog] priority. Assign to this
property to change the logging priority.

UDev uses the standard syslog [http://docs.python.org/library/syslog.html#module-syslog] priorities. Constants for these
priorities are defined in the syslog [http://docs.python.org/library/syslog.html#module-syslog] module in the standard
library:

>>> import syslog
>>> context = pyudev.Context()
>>> context.log_priority = syslog.LOG_DEBUG

New in version 0.9.

	
list_devices(**kwargs)

	List all available devices.

The arguments of this method are the same as for
Enumerator.match(). In fact, the arguments are simply passed
straight to method match().

This function creates and returns an Enumerator object,
that can be used to filter the list of devices, and eventually
retrieve Device objects representing matching devices.

Changed in version 0.8: Accept keyword arguments now for easy matching.

Enumerator – device enumeration and filtering

	
class pyudev.Enumerator

	A filtered iterable of devices.

To retrieve devices, simply iterate over an instance of this class.
This operation yields Device objects representing the available
devices.

Before iteration the device list can be filtered by subsystem or by
property values using match_subsystem() and
match_property(). Multiple subsystem (property) filters are
combined using a logical OR, filters of different types are combined
using a logical AND. The following filter for instance:

devices.match_subsystem('block').match_property(
 'ID_TYPE', 'disk').match_property('DEVTYPE', 'disk')

means the following:

subsystem == 'block' and (ID_TYPE == 'disk' or DEVTYPE == 'disk')

Once added, a filter cannot be removed anymore. Create a new object
instead.

Instances of this class can directly be given as given udev_enumerate *
to functions wrapped through ctypes [http://docs.python.org/library/ctypes.html#module-ctypes].

	
match(**kwargs)

	Include devices according to the rules defined by the keyword
arguments. These keyword arguments are interpreted as follows:

	The value for the keyword argument subsystem is forwarded to
match_subsystem().

	The value for the keyword argument sys_name is forwared to
match_sys_name().

	The value for the keyword argument tag is forwared to
match_tag().

	The value for the keyword argument parent is forwared to
match_parent().

	All other keyword arguments are forwareded one by one to
match_property(). The keyword argument itself is interpreted
as property name, the value of the keyword argument as the property
value.

All keyword arguments are optional, calling this method without no
arguments at all is simply a noop.

Return the instance again.

New in version 0.8.

Changed in version 0.13: Add parent keyword.

	
match_subsystem(subsystem, nomatch=False)

	Include all devices, which are part of the given subsystem.

subsystem is either a unicode string or a byte string, containing
the name of the subsystem. If nomatch is True (default is
False), the match is inverted: A device is only included if it is
not part of the given subsystem.

Return the instance again.

	
match_sys_name(sys_name)

	Include all devices with the given name.

sys_name is a byte or unicode string containing the device name.

Return the instance again.

New in version 0.8.

	
match_property(prop, value)

	Include all devices, whose prop has the given value.

prop is either a unicode string or a byte string, containing
the name of the property to match. value is a property value,
being one of the following types:

	int()

	bool()

	A byte string

	Anything convertable to a unicode string (including a unicode string
itself)

Return the instance again.

	
match_attribute(attribute, value, nomatch=False)

	Include all devices, whose attribute has the given value.

attribute is either a unicode string or a byte string, containing
the name of a sys attribute to match. value is an attribute value,
being one of the following types:

	int(),

	bool()

	A byte string

	Anything convertable to a unicode string (including a unicode string
itself)

If nomatch is True (default is False), the match is
inverted: A device is include if the attribute does not match
the given value.

Note

If nomatch is True, devices which do not have the given
attribute at all are also included. In other words, with
nomatch=True the given attribute is not guaranteed to
exist on all returned devices.

Return the instance again.

	
match_tag(tag)

	Include all devices, which have the given tag attached.

tag is a byte or unicode string containing the tag name.

Return the instance again.

Required udev version: 154

New in version 0.6.

	
match_parent(parent)

	Include all devices on the subtree of the given parent device.

The parent device itself is also included.

parent is a Device.

Return the instance again.

Required udev version: 172

New in version 0.13.

	
match_is_initialized()

	Include only devices, which are initialized.

Initialized devices have properly set device node permissions and
context, and are (in case of network devices) fully renamed.

Currently this will not affect devices which do not have device nodes
and are not network interfaces.

Return the instance again.

See also

Device.is_initialized

Required udev version: 165

New in version 0.8.

	
__iter__()

	Iterate over all matching devices.

Yield Device objects.

Devices – constructing Device objects

	
class pyudev.Devices

	Class for constructing Device objects from various kinds of data.

Construction of device objects

	
classmethod from_path(context, path)

	Create a device from a device path. The path may or may not
start with the sysfs mount point:

>>> from pyudev import Context, Device
>>> context = Context()
>>> Devices.from_path(context, '/devices/platform')
Device(u'/sys/devices/platform')
>>> Devices.from_path(context, '/sys/devices/platform')
Device(u'/sys/devices/platform')

context is the Context in which to search the device.
path is a device path as unicode or byte string.

Return a Device object for the device. Raise
DeviceNotFoundAtPathError, if no device was found for path.

New in version 0.18.

	
classmethod from_sys_path(context, sys_path)

	Create a new device from a given sys_path:

>>> from pyudev import Context, Device
>>> context = Context()
>>> Devices.from_sys_path(context, '/sys/devices/platform')
Device(u'/sys/devices/platform')

context is the Context in which to search the device.
sys_path is a unicode or byte string containing the path of the
device inside sysfs with the mount point included.

Return a Device object for the device. Raise
DeviceNotFoundAtPathError, if no device was found for
sys_path.

New in version 0.18.

	
classmethod from_name(context, subsystem, sys_name)

	Create a new device from a given subsystem and a given
sys_name:

>>> from pyudev import Context, Device
>>> context = Context()
>>> sda = Devices.from_name(context, 'block', 'sda')
>>> sda
Device(u'/sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/block/sda')
>>> sda == Devices.from_path(context, '/block/sda')

context is the Context in which to search the device.
subsystem and sys_name are byte or unicode strings, which
denote the subsystem and the name of the device to create.

Return a Device object for the device. Raise
DeviceNotFoundByNameError, if no device was found with the given
name.

New in version 0.18.

	
classmethod from_device_number(context, typ, number)

	Create a new device from a device number with the given device
type:

>>> import os
>>> from pyudev import Context, Device
>>> ctx = Context()
>>> major, minor = 8, 0
>>> device = Devices.from_device_number(context, 'block',
... os.makedev(major, minor))
>>> device
Device(u'/sys/devices/pci0000:00/0000:00:11.0/host0/target0:0:0/0:0:0:0/block/sda')
>>> os.major(device.device_number), os.minor(device.device_number)
(8, 0)

Use os.makedev() [http://docs.python.org/library/os.html#os.makedev] to construct a device number from a major and a
minor device number, as shown in the example above.

Warning

Device numbers are not unique across different device types.
Passing a correct number with a wrong type may silently yield a
wrong device object, so make sure to pass the correct device type.

context is the Context, in which to search the device.
type is either 'char' or 'block', according to whether the
device is a character or block device. number is the device number
as integer.

Return a Device object for the device with the given device
number. Raise DeviceNotFoundByNumberError, if no device was
found with the given device type and number.

New in version 0.18.

	
classmethod from_device_file(context, filename)

	Create a new device from the given device file:

>>> from pyudev import Context, Device
>>> context = Context()
>>> device = Devices.from_device_file(context, '/dev/sda')
>>> device
Device(u'/sys/devices/pci0000:00/0000:00:0d.0/host2/target2:0:0/2:0:0:0/block/sda')
>>> device.device_node
u'/dev/sda'

Warning

Though the example seems to suggest that device.device_node ==
filename holds with device = Devices.from_device_file(context,
filename), this is only true in a majority of cases. There can
be devices, for which this relation is actually false! Thus, do
not expect device_node to be equal to the given
filename for the returned Device. Especially, use
device_node if you need the device file of a
Device created with this method afterwards.

context is the Context in which to search the device.
filename is a string containing the path of a device file.

Return a Device representing the given device file. Raise
DeviceNotFoundByFileError if filename is no device file
at all or if filename does not exist or if its metadata was
inaccessible.

New in version 0.18.

	
classmethod from_environment(context)

	Create a new device from the process environment (as in
os.environ [http://docs.python.org/library/os.html#os.environ]).

This only works reliable, if the current process is called from an
udev rule, and is usually used for tools executed from IMPORT=
rules. Use this method to create device objects in Python scripts
called from udev rules.

context is the library Context.

Return a Device object constructed from the environment.
Raise DeviceNotFoundInEnvironmentError, if no device could be
created from the environment.

Required udev version: 152

New in version 0.18.

	
classmethod METHODS()

	Return methods that obtain a Device from a variety of
different data.

	Returns:	a list of from_* methods.

	Return type:	list of class methods

New in version 0.18.

Device – accessing device information

	
class pyudev.Device

	A single device with attached attributes and properties.

This class subclasses the Mapping ABC, providing a read-only
dictionary mapping property names to the corresponding values.
Therefore all well-known dicitionary methods and operators
(e.g. .keys(), .items(), in) are available to access device
properties.

Aside of the properties, a device also has a set of udev-specific
attributes like the path inside sysfs.

Device objects compare equal and unequal to other devices and
to strings (based on device_path). However, there is no
ordering on Device objects, and the corresponding operators
>, <, <= and >= raise TypeError [http://docs.python.org/library/exceptions.html#exceptions.TypeError].

Warning

Never use object identity (is operator) to compare
Device objects. pyudev may create multiple
Device objects for the same device. Instead compare
devices by value using == or !=.

Device objects are hashable and can therefore be used as keys
in dictionaries and sets.

They can also be given directly as udev_device * to functions wrapped
through ctypes [http://docs.python.org/library/ctypes.html#module-ctypes].

Construction of device objects

	
classmethod from_path(context, path)

	
New in version 0.4.

Deprecated since version 0.18: Use Devices.from_path instead.

	
classmethod from_sys_path(context, sys_path)

	
Changed in version 0.4: Raise NoSuchDeviceError instead of returning None, if
no device was found for sys_path.

Changed in version 0.5: Raise DeviceNotFoundAtPathError instead of
NoSuchDeviceError.

Deprecated since version 0.18: Use Devices.from_sys_path instead.

	
classmethod from_name(context, subsystem, sys_name)

	
New in version 0.5.

Deprecated since version 0.18: Use Devices.from_name instead.

	
classmethod from_device_number(context, typ, number)

	
New in version 0.11.

Deprecated since version 0.18: Use Devices.from_device_number instead.

	
classmethod from_device_file(context, filename)

	
New in version 0.15.

Deprecated since version 0.18: Use Devices.from_device_file instead.

	
classmethod from_environment(context)

	
New in version 0.6.

Deprecated since version 0.18: Use Devices.from_environment instead.

General attributes

	
context

	The Context to which this device is bound.

New in version 0.5.

	
sys_path

	Absolute path of this device in sysfs including the sysfs
mount point as unicode string.

	
sys_name

	Device file name inside sysfs as unicode string.

	
sys_number

	The trailing number of the sys_name as unicode string, or
None, if the device has no trailing number in its name.

Note

The number is returned as unicode string to preserve the exact
format of the number, especially any leading zeros:

>>> from pyudev import Context, Device
>>> context = Context()
>>> device = Devices.from_path(context, '/sys/devices/LNXSYSTM:00')
>>> device.sys_number
u'00'

To work with numbers, explicitly convert them to ints:

>>> int(device.sys_number)
0

New in version 0.11.

	
device_path

	Kernel device path as unicode string. This path uniquely identifies
a single device.

Unlike sys_path, this path does not contain the sysfs
mount point. However, the path is absolute and starts with a slash
'/'.

	
tags

	A Tags object representing the tags attached to this device.

The Tags object supports a test for a single tag as well as
iteration over all tags:

>>> from pyudev import Context
>>> context = Context()
>>> device = next(iter(context.list_devices(tag='systemd')))
>>> 'systemd' in device.tags
True
>>> list(device.tags)
[u'seat', u'systemd', u'uaccess']

Tags are arbitrary classifiers that can be attached to devices by udev
scripts and daemons. For instance, systemd [http://freedesktop.org/wiki/Software/systemd] uses tags for multi-seat [http://www.freedesktop.org/wiki/Software/systemd/multiseat]
support.

Required udev version: 154

New in version 0.6.

Changed in version 0.13: Return a Tags object now.

Device driver and subsystem

	
subsystem

	Name of the subsystem this device is part of as unicode string.

	
driver

	The driver name as unicode string, or None, if there is no
driver for this device.

New in version 0.5.

	
device_type

	Device type as unicode string, or None, if the device type is
unknown.

>>> from pyudev import Context
>>> context = Context()
>>> for device in context.list_devices(subsystem='net'):
... '{0} - {1}'.format(device.sys_name, device.device_type or 'ethernet')
...
u'eth0 - ethernet'
u'wlan0 - wlan'
u'lo - ethernet'
u'vboxnet0 - ethernet'

New in version 0.10.

Device nodes

	
device_node

	Absolute path to the device node of this device as unicode string or
None, if this device doesn’t have a device node. The path
includes the device directory (see Context.device_path).

This path always points to the actual device node associated with
this device, and never to any symbolic links to this device node.
See device_links to get a list of symbolic links to this
device node.

Warning

For devices created with from_device_file(), the value of
this property is not necessary equal to the filename given to
from_device_file().

	
device_number

	The device number of the associated device as integer, or 0, if no
device number is associated.

Use os.major() [http://docs.python.org/library/os.html#os.major] and os.minor() [http://docs.python.org/library/os.html#os.minor] to decompose the device
number into its major and minor number:

>>> import os
>>> from pyudev import Context, Device
>>> context = Context()
>>> sda = Devices.from_name(context, 'block', 'sda')
>>> sda.device_number
2048L
>>> (os.major(sda.device_number), os.minor(sda.device_number))
(8, 0)

For devices with an associated device_node, this is the same as
the st_rdev field of the stat result of the device_node:

>>> os.stat(sda.device_node).st_rdev
2048

New in version 0.11.

	
device_links

	An iterator, which yields the absolute paths (including the device
directory, see Context.device_path) of all symbolic links
pointing to the device_node of this device. The paths are
unicode strings.

UDev can create symlinks to the original device node (see
device_node) inside the device directory. This is often
used to assign a constant, fixed device node to devices like
removeable media, which technically do not have a constant device
node, or to map a single device into multiple device hierarchies.
The property provides access to all such symbolic links, which were
created by UDev for this device.

Warning

Links are not necessarily resolved by
Devices.from_device_file(). Hence do not rely on
Devices.from_device_file(context, link).device_path ==
device.device_path from any link in device.device_links.

Device initialization time

	
is_initialized

	True, if the device is initialized, False otherwise.

A device is initialized, if udev has already handled this device and
has set up device node permissions and context, or renamed a network
device.

Consequently, this property is only implemented for devices with a
device node or for network devices. On all other devices this property
is always True.

It is not recommended, that you use uninitialized devices.

See also

time_since_initialized

Required udev version: 165

New in version 0.8.

	
time_since_initialized

	The time elapsed since initialization as timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta].

This property is only implemented on devices, which need to store
properties in the udev database. On all other devices this property is
simply zero timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta].

See also

is_initialized

Required udev version: 165

New in version 0.8.

Device hierarchy

	
parent

	The parent Device or None, if there is no parent
device.

	
ancestors

	Yield all ancestors of this device from bottom to top.

Return an iterator yielding a Device object for each
ancestor of this device from bottom to top.

New in version 0.16.

	
children

	Yield all direct children of this device.

Note

In udev, parent-child relationships are generally ambiguous, i.e.
a parent can have multiple children, and a child can have multiple
parents. Hence, child.parent == parent does generally not hold
for all child objects in parent.children. In other words,
the parent of a device in this property can be different
from this device!

Note

As the underlying library does not provide any means to directly
query the children of a device, this property performs a linear
search through all devices.

Return an iterable yielding a Device object for each direct
child of this device.

Required udev version: 172

Changed in version 0.13: Requires udev version 172 now.

	
find_parent(subsystem, device_type=None)

	Find the parent device with the given subsystem and
device_type.

subsystem is a byte or unicode string containing the name of the
subsystem, in which to search for the parent. device_type is a
byte or unicode string holding the expected device type of the parent.
It can be None (the default), which means, that no specific device
type is expected.

Return a parent Device within the given subsystem and – if
device_type is not None – with the given device_type, or
None, if this device has no parent device matching these
constraints.

New in version 0.9.

Device events

	
action

	The device event action as string, or None, if this device was not
received from a Monitor.

Usual actions are:

	'add'

	A device has been added (e.g. a USB device was plugged in)

	'remove'

	A device has been removed (e.g. a USB device was unplugged)

	'change'

	Something about the device changed (e.g. a device property)

	'online'

	The device is online now

	'offline'

	The device is offline now

Warning

Though the actions listed above are the most common, this property
may return other values, too, so be prepared to handle unknown
actions!

New in version 0.16.

	
sequence_number

	The device event sequence number as integer, or 0 if this device
has no sequence number, i.e. was not received from a Monitor.

New in version 0.16.

Device properties

	
__iter__()

	Iterate over the names of all properties defined for this device.

Return a generator yielding the names of all properties of this
device as unicode strings.

	
__len__()

	Return the amount of properties defined for this device as integer.

	
__getitem__(prop)

	Get the given property from this device.

prop is a unicode or byte string containing the name of the
property.

Return the property value as unicode string, or raise a
KeyError [http://docs.python.org/library/exceptions.html#exceptions.KeyError], if the given property is not defined
for this device.

	
asint(prop)

	Get the given property from this device as integer.

prop is a unicode or byte string containing the name of the
property.

Return the property value as integer. Raise a
KeyError [http://docs.python.org/library/exceptions.html#exceptions.KeyError], if the given property is not defined
for this device, or a ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError], if the property
value cannot be converted to an integer.

	
asbool(prop)

	Get the given property from this device as boolean.

A boolean property has either a value of '1' or of '0',
where '1' stands for True, and '0' for False. Any
other value causes a ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] to be raised.

prop is a unicode or byte string containing the name of the
property.

Return True, if the property value is '1' and False, if
the property value is '0'. Any other value raises a
ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]. Raise a KeyError [http://docs.python.org/library/exceptions.html#exceptions.KeyError],
if the given property is not defined for this device.

Sysfs attributes

	
attributes

	The system attributes of this device as read-only
Attributes mapping.

System attributes are basically normal files inside the the device
directory. These files contain all sorts of information about the
device, which may not be reflected by properties. These attributes
are commonly used for matching in udev rules, and can be printed
using udevadm info --attribute-walk.

The values of these attributes are not always proper strings, and
can contain arbitrary bytes.

New in version 0.5.

Deprecated members

	
traverse()

	Traverse all parent devices of this device from bottom to top.

Return an iterable yielding all parent devices as Device
objects, not including the current device. The last yielded
Device is the top of the device hierarchy.

Deprecated since version 0.16: Will be removed in 1.0. Use ancestors instead.

	
class pyudev.Attributes

	udev attributes for Device objects.

New in version 0.5.

	
device

	The Device to which these attributes belong.

	
asstring(attribute)

	Get the given attribute for the device as unicode string.

	Parameters:	attribute (unicode or byte string) – the key for an attribute value

	Returns:	the value corresponding to attribute, as unicode

	Return type:	unicode [http://docs.python.org/library/functions.html#unicode]

	Raises:	
	KeyError – if no value found for attribute

	UnicodeDecodeError – if value is not convertible

	
asint(attribute)

	Get the given attribute as an int.

	Parameters:	attribute (unicode or byte string) – the key for an attribute value

	Returns:	the value corresponding to attribute, as an int

	Return type:	int [http://docs.python.org/library/functions.html#int]

	Raises:	
	KeyError – if no value found for attribute

	UnicodeDecodeError – if value is not convertible to unicode

	ValueError – if unicode value can not be converted to an int

	
asbool(attribute)

	Get the given attribute from this device as a bool.

	Parameters:	attribute (unicode or byte string) – the key for an attribute value

	Returns:	the value corresponding to attribute, as bool

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	Raises:	
	KeyError – if no value found for attribute

	UnicodeDecodeError – if value is not convertible to unicode

	ValueError – if unicode value can not be converted to a bool

A boolean attribute has either a value of '1' or of '0',
where '1' stands for True, and '0' for False. Any
other value causes a ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] to be raised.

	
class pyudev.Tags

	A iterable over Device tags.

Subclasses the Container and the Iterable ABC.

	
__iter__()

	Iterate over all tags.

Yield each tag as unicode string.

	
__contains__(tag)

	Check for existence of tag.

tag is a tag as unicode string.

Return True, if tag is attached to the device, False
otherwise.

Device exceptions

	
class pyudev.DeviceNotFoundError

	An exception indicating that no Device was found.

Changed in version 0.5: Rename from NoSuchDeviceError to its current name.

	
class pyudev.DeviceNotFoundAtPathError(sys_path)

	A DeviceNotFoundError indicating that no Device was
found at a given path.

	
sys_path

	The path that caused this error as string.

	
class pyudev.DeviceNotFoundByNameError(subsystem, sys_name)

	A DeviceNotFoundError indicating that no Device was
found with a given name.

	
subsystem

	The subsystem that caused this error as string.

	
sys_name

	The sys name that caused this error as string.

	
class pyudev.DeviceNotFoundByNumberError(typ, number)

	A DeviceNotFoundError indicating, that no Device was found
for a given device number.

	
device_number

	The device number causing this error as integer.

	
device_type

	The device type causing this error as string. Either 'char' or
'block'.

	
class pyudev.DeviceNotFoundInEnvironmentError

	A DeviceNotFoundError indicating, that no Device could
be constructed from the process environment.

Monitor – device monitoring

	
class pyudev.Monitor

	A synchronous device event monitor.

A Monitor objects connects to the udev daemon and listens for
changes to the device list. A monitor is created by connecting to the
kernel daemon through netlink (see from_netlink()):

>>> from pyudev import Context, Monitor
>>> context = Context()
>>> monitor = Monitor.from_netlink(context)

Once the monitor is created, you can add a filter using filter_by()
or filter_by_tag() to drop incoming events in subsystems, which are
not of interest to the application:

>>> monitor.filter_by('input')

When the monitor is eventually set up, you can either poll for events
synchronously:

>>> device = monitor.poll(timeout=3)
>>> if device:
... print('{0.action}: {0}'.format(device))
...

Or you can monitor events asynchronously with MonitorObserver.

To integrate into various event processing frameworks, the monitor provides
a selectable [http://docs.python.org/library/select.html#select.select] file description by fileno().
However, do not read or write directly on this file descriptor.

Instances of this class can directly be given as udev_monitor * to
functions wrapped through ctypes [http://docs.python.org/library/ctypes.html#module-ctypes].

Changed in version 0.16: Remove from_socket() which is deprecated, and even removed in
recent udev versions.

	
classmethod from_netlink(context, source=u'udev')

	Create a monitor by connecting to the kernel daemon through netlink.

context is the Context to use. source is a string,
describing the event source. Two sources are available:

	'udev' (the default)

	Events emitted after udev as registered and configured the device.
This is the absolutely recommended source for applications.

	'kernel'

	Events emitted directly after the kernel has seen the device. The
device has not yet been configured by udev and might not be usable
at all. Never use this, unless you know what you are doing.

Return a new Monitor object, which is connected to the
given source. Raise ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError], if an invalid
source has been specified. Raise
EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError], if the creation of the monitor
failed.

	
context

	The Context to which this monitor is bound.

New in version 0.5.

	
started

	True, if this monitor was started, False otherwise. Readonly.

See also

start()

New in version 0.16.

	
fileno()

	Return the file description associated with this monitor as integer.

This is really a real file descriptor ;), which can be watched and
select.select() [http://docs.python.org/library/select.html#select.select]ed.

	
filter_by(subsystem, device_type=None)

	Filter incoming events.

subsystem is a byte or unicode string with the name of a
subsystem (e.g. 'input'). Only events originating from the
given subsystem pass the filter and are handed to the caller.

If given, device_type is a byte or unicode string specifying the
device type. Only devices with the given device type are propagated
to the caller. If device_type is not given, no additional
filter for a specific device type is installed.

These filters are executed inside the kernel, and client processes
will usually not be woken up for device, that do not match these
filters.

Changed in version 0.15: This method can also be after start() now.

	
filter_by_tag(tag)

	Filter incoming events by the given tag.

tag is a byte or unicode string with the name of a tag. Only
events for devices which have this tag attached pass the filter and are
handed to the caller.

Like with filter_by() this filter is also executed inside the
kernel, so that client processes are usually not woken up for devices
without the given tag.

Required udev version: 154

New in version 0.9.

Changed in version 0.15: This method can also be after start() now.

	
remove_filter()

	Remove any filters installed with filter_by() or
filter_by_tag() from this monitor.

Warning

Up to udev 181 (and possibly even later versions) the underlying
udev_monitor_filter_remove() seems to be broken. If used with
affected versions this method always raises
ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError].

Raise EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError] if removal of installed
filters failed.

New in version 0.15.

	
start()

	Start this monitor.

The monitor will not receive events until this method is called. This
method does nothing if called on an already started Monitor.

Note

Typically you don’t need to call this method. It is implicitly
called by poll() and __iter__().

See also

started

Changed in version 0.16: This method does nothing if the Monitor was already
started.

	
set_receive_buffer_size(size)

	Set the receive buffer size.

size is the requested buffer size in bytes, as integer.

Note

The CAP_NET_ADMIN capability must be contained in the effective
capability set of the caller for this method to succeed. Otherwise
EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError] will be raised, with errno
set to EPERM [http://docs.python.org/library/errno.html#errno.EPERM]. Unprivileged processes typically lack
this capability. You can check the capabilities of the current
process with the python-prctl [http://packages.python.org/python-prctl] module:

>>> import prctl
>>> prctl.cap_effective.net_admin

Raise EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError], if the buffer size could not
bet set.

New in version 0.13.

	
poll(timeout=None)

	Poll for a device event.

You can use this method together with iter() [http://docs.python.org/library/functions.html#iter] to synchronously
monitor events in the current thread:

for device in iter(monitor.poll, None):
 print('{0.action} on {0.device_path}'.format(device))

Since this method will never return None if no timeout is
specified, this is effectively an endless loop. With
functools.partial() [http://docs.python.org/library/functools.html#functools.partial] you can also create a loop that only waits
for a specified time:

for device in iter(partial(monitor.poll, 3), None):
 print('{0.action} on {0.device_path}'.format(device))

This loop will only wait three seconds for a new device event. If no
device event occurred after three seconds, the loop will exit.

timeout is a floating point number that specifies a time-out in
seconds. If omitted or None, this method blocks until a device
event is available. If 0, this method just polls and will never
block.

Note

This method implicitly calls start().

Return the received Device, or None if a timeout
occurred. Raise EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError] if event retrieval
failed.

See also

	Device.action

	The action that created this event.

	Device.sequence_number

	The sequence number of this event.

New in version 0.16.

Deprecated members

	
enable_receiving()

	Switch the monitor into listing mode.

Connect to the event source and receive incoming events. Only after
calling this method, the monitor listens for incoming events.

Note

This method is implicitly called by __iter__(). You don’t
need to call it explicitly, if you are iterating over the
monitor.

Deprecated since version 0.16: Will be removed in 1.0. Use start() instead.

	
receive_device()

	Receive a single device from the monitor.

Warning

You must call start() before calling this method.

The caller must make sure, that there are events available in the
event queue. The call blocks, until a device is available.

If a device was available, return (action, device). device
is the Device object describing the device. action is
a string describing the action. Usual actions are:

	'add'

	A device has been added (e.g. a USB device was plugged in)

	'remove'

	A device has been removed (e.g. a USB device was unplugged)

	'change'

	Something about the device changed (e.g. a device property)

	'online'

	The device is online now

	'offline'

	The device is offline now

Raise EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError], if no device could be
read.

Deprecated since version 0.16: Will be removed in 1.0. Use Monitor.poll() instead.

	
__iter__()

	Wait for incoming events and receive them upon arrival.

This methods implicitly calls start(), and starts polling the
fileno() of this monitor. If a event comes in, it receives the
corresponding device and yields it to the caller.

The returned iterator is endless, and continues receiving devices
without ever stopping.

Yields (action, device) (see receive_device() for a
description).

Deprecated since version 0.16: Will be removed in 1.0. Use an explicit loop over poll()
instead, or monitor asynchronously with MonitorObserver.

MonitorObserver – asynchronous device monitoring

	
class pyudev.MonitorObserver(monitor, event_handler=None, callback=None, *args, **kwargs)

	An asynchronous observer for device events.

This class subclasses Thread [http://docs.python.org/library/threading.html#threading.Thread] class to asynchronously
observe a Monitor in a background thread:

>>> from pyudev import Context, Monitor, MonitorObserver
>>> context = Context()
>>> monitor = Monitor.from_netlink(context)
>>> monitor.filter_by(subsystem='input')
>>> def print_device_event(device):
... print('background event {0.action}: {0.device_path}'.format(device))
>>> observer = MonitorObserver(monitor, callback=print_device_event, name='monitor-observer')
>>> observer.daemon
True
>>> observer.start()

In the above example, input device events will be printed in background,
until stop() is called on observer.

Note

Instances of this class are always created as daemon thread. If you do
not want to use daemon threads for monitoring, you need explicitly set
daemon [http://docs.python.org/library/threading.html#threading.Thread.daemon] to False before invoking
start() [http://docs.python.org/library/threading.html#threading.Thread.start].

See also

	Device.action

	The action that created this event.

	Device.sequence_number

	The sequence number of this event.

New in version 0.14.

Changed in version 0.15: Monitor.start() is implicitly called when the thread is started.

	
monitor

	Get the Monitor observer by this object.

	
__init__(monitor, event_handler=None, callback=None, *args, **kwargs)

	Create a new observer for the given monitor.

monitor is the Monitor to observe. callback is the
callable to invoke on events, with the signature callback(device)
where device is the Device that caused the event.

Warning

callback is invoked in the observer thread, hence the observer
is blocked while callback executes.

args and kwargs are passed unchanged to the constructor of
Thread [http://docs.python.org/library/threading.html#threading.Thread].

Deprecated since version 0.16: The event_handler argument will be removed in 1.0. Use
the callback argument instead.

Changed in version 0.16: Add callback argument.

	
send_stop()

	Send a stop signal to the background thread.

The background thread will eventually exit, but it may still be running
when this method returns. This method is essentially the asynchronous
equivalent to stop().

Note

The underlying monitor is not stopped.

	
stop()

	Synchronously stop the background thread.

Note

This method can safely be called from the observer thread. In this
case it is equivalent to send_stop().

Send a stop signal to the backgroud (see send_stop()), and waits
for the background thread to exit (see join() [http://docs.python.org/library/threading.html#threading.Thread.join])
if the current thread is not the observer thread.

After this method returns in a thread that is not the observer
thread, the callback is guaranteed to not be invoked again
anymore.

Note

The underlying monitor is not stopped.

Changed in version 0.16: This method can be called from the observer thread.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	API documentation

pyudev.pyqt4 – PyQt4_ integration

Deprecated API

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	API documentation

pyudev.pyqt5 – PyQt5 [http://riverbankcomputing.co.uk/software/pyqt/intro] integration

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	API documentation

pyudev.pyside – PySide_ integration

Deprecated API

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	API documentation

pyudev.glib – Glib/Gtk 2 integration

Glib integration.

MonitorObserver integrates device monitoring into the Glib
mainloop by turing device events into Glib signals.

glib and gobject from PyGObject [http://www.pygtk.org/] must be available when
importing this module. PyGtk is not required.

New in version 0.7.

	
class pyudev.glib.MonitorObserver(monitor)

	An observer for device events integrating into the glib mainloop.

This class inherits GObject to turn device events into
glib signals.

>>> from pyudev import Context, Monitor
>>> from pyudev.glib import MonitorObserver
>>> context = Context()
>>> monitor = Monitor.from_netlink(context)
>>> monitor.filter_by(subsystem='input')
>>> observer = MonitorObserver(monitor)
>>> def device_event(observer, device):
... print('event {0} on device {1}'.format(device.action, device))
>>> observer.connect('device-event', device_event)
>>> monitor.start()

This class is a child of gobject.GObject.

	
monitor

	The Monitor observed by this object.

	
event_source

	The event source, which represents the watch on the monitor
(as returned by glib.io_add_watch()), or None, if
enabled is False.

	
enabled

	Whether this observer is enabled or not.

If True (the default), this observer is enabled, and emits events.
Otherwise it is disabled and does not emit any events.

New in version 0.14.

Signals

This class emits the following GObject signal:

	
device-event(observer, action, device)

	Emitted upon any device event.

observer is the MonitorObserver, which emitted the
signal. device is the Device, which caused this
event.

Use action to get the type of event.

Deprecated API

	
class pyudev.glib.GUDevMonitorObserver(monitor)

	An observer for device events integrating into the glib mainloop.

Deprecated since version 0.17: Will be removed in 1.0. Use MonitorObserver instead.

	
monitor

	The Monitor observed by this object.

	
event_source

	The event source, which represents the watch on the monitor
(as returned by glib.io_add_watch()), or None, if
enabled is False.

	
enabled

	Whether this observer is enabled or not.

If True (the default), this observer is enabled, and emits events.
Otherwise it is disabled and does not emit any events.

New in version 0.14.

Signals

This class emits the following GObject signals:

	
device-event(observer, action, device)

	Emitted upon any device event. observer is the
GUDevMonitorObserver, which emitted the signal. action
is a unicode string containing the action name, and device is the
Device, which caused this event.

Basically the last two arguments of this signal are simply the
return value of receive_device()

	
device-added(observer, device)

	Emitted if a Device is added (e.g a USB device was
plugged).

	
device-removed(observer, device)

	Emitted if a Device is removed (e.g. a USB device was
unplugged).

	
device-changed(observer, device)

	Emitted if a Device was somehow changed (e.g. a
change of a property)

	
device-moved(observer, device)

	Emitted if a Device was renamed, moved or
re-parented.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	API documentation

pyudev.wx – wxPython [http://wxpython.org/] integration

Wx integration.

MonitorObserver integrates device monitoring into the wxPython_
mainloop by turing device events into wx events.

wx from wxPython_ must be available when importing this module.

New in version 0.14.

	
class pyudev.wx.MonitorObserver(monitor)

	An observer for device events integrating into the wx mainloop.

This class inherits EvtHandler to turn device events into
wx events:

>>> from pyudev import Context, Monitor
>>> from pyudev.wx import MonitorObserver
>>> context = Context()
>>> monitor = Monitor.from_netlink(context)
>>> monitor.filter_by(subsystem='input')
>>> observer = MonitorObserver(monitor)
>>> def device_event(event):
... print('action {0} on device {1}'.format(event.device.action, event.device))
>>> observer.Bind(EVT_DEVICE_EVENT, device_event)
>>> monitor.start()

This class is a child of wx.EvtHandler.

New in version 0.17.

	
monitor

	The Monitor observed by this object.

	
enabled

	Whether this observer is enabled or not.

If True (the default), this observer is enabled, and emits events.
Otherwise it is disabled and does not emit any events.

Events

MonitorObserver posts the following event:

	
pyudev.wx.EVT_DEVICE_EVENT

	Emitted upon any device event. Receivers get a DeviceEvent object
as argument.

	
class pyudev.wx.DeviceEvent

	Argument object for EVT_DEVICE_EVENT.

	
device

	The Device object that caused this event.

Use action to get the type of event.

Deprecated members

	
action

	A unicode string containing the action name.

Deprecated since version 0.17: Will be removed in 1.0. Use action instead.

Deprecated API

	
class pyudev.wx.WxUDevMonitorObserver(monitor)

	An observer for device events integrating into the wx mainloop.

Deprecated since version 0.17: Will be removed in 1.0. Use MonitorObserver instead.

	
monitor

	The Monitor observed by this object.

	
enabled

	Whether this observer is enabled or not.

If True (the default), this observer is enabled, and emits events.
Otherwise it is disabled and does not emit any events.

Events

WxUDevMonitorObserver posts the following events in addition to
EVT_DEVICE_EVENT:

	
pyudev.wx.EVT_DEVICE_ADDED

	Emitted if a Device is added (e.g a USB device was
plugged). Receivers get a DeviceAddedEvent object as argument.

Deprecated since version 0.17: Will be removed in 1.0.

	
pyudev.wx.EVT_DEVICE_REMOVED

	Emitted if a Device is removed (e.g. a USB device was
unplugged). Receivers get a DeviceRemovedEvent object as argument.

Deprecated since version 0.17: Will be removed in 1.0.

	
pyudev.wx.EVT_DEVICE_CHANGED

	Emitted if a Device was somehow changed (e.g. a change of a
property). Receivers get a DeviceChangedEvent object as argument.

Deprecated since version 0.17: Will be removed in 1.0.

	
pyudev.wx.EVT_DEVICE_MOVED

	Emitted if a Device was renamed, moved or re-parented.
Receivers get a DeviceMovedEvent object as argument.

	
class pyudev.wx.DeviceAddedEvent

	
class pyudev.wx.DeviceRemovedEvent

	
class pyudev.wx.DeviceChangedEvent

	
class pyudev.wx.DeviceMovedEvent

	Argument objects for EVT_DEVICE_ADDED, EVT_DEVICE_REMOVED,
EVT_DEVICE_CHANGED and EVT_DEVICE_MOVED.

Deprecated since version 0.17: Will be removed in 1.0.

	
device

	The Device object that caused this event.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

Contribute

Please fork the repository, and send pull requests with new features or bug
fixes, but respect the following guidelines:

	Read how to properly contribute to open source projects on GitHub.

	Understand the branching model.

	Use a topic branch based on the develop branch to easily amend a pull
request later, if necessary.

	Write good commit messages.

	Squash commits on the topic branch before opening a pull request.

	Respect PEP 8 [https://www.python.org/dev/peps/pep-0008] (use pep8 [http://pypi.python.org/pypi/pep8/] to check your coding style compliance).

	Add unit tests if possible (refer to the testsuite documentation).

	Add API documentation in docstrings.

	Open a pull request [https://help.github.com/articles/using-pull-requests].
that relates to but one subject with a clear title and description in
grammatically correct, complete sentences.

Complying to these guidelines greatly increase the change of getting your pull
request merged. You will be asked to improve your changeset if your pull
request breaks any of the above guidelines.

If you intend to make larger changes, especially if these changes break the ABI,
please ask on the mailing list first.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

Testsuite documentation

This document explains the pyudev test suite and how to add new tests to this
suite.

The pyudev testsuite uses the powerful pytest [http://pytest.org] unittest framework, accompied by
the nice mock [http://www.voidspace.org.uk/python/mock/] library for mocking native functions and heavily extended with
plugins to support the tests.

	Test running
	Virtual testing

	Direct testing using tox

	Notes
	Device samples

	Privileged tests

	plugins – Testsuite plugins
	privileged – Privileged operations
	Command line options

	Configuration

	pytest namespace

	fake_monitor – A fake Monitor
	Funcargs

	mock_libudev – Mock calls to libudev

	travis – Support for Travis CI
	Test markers

	pytest namespace

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	Testsuite documentation

Test running

Virtual testing

If you are on a non-Linux system install VirtualBox [https://www.virtualbox.org/] and Vagrant [http://vagrantup.com/], and run
make vagrant-test.

You may specify arbitrary py.test arguments by TESTARGS:

make TESTARGS='--enable-privileged -k observer --verbose' vagrant-test

Vagrant automatically fetches, installs and provisions a virtual machine based
on Ubuntu Lucid. This virtual machine has the pyudev source code linked in as
shared folder under /vagrant, and two virtualenvs for Python 2 and Python 3
with all dependencies installed at ~/pyudev-py2 and ~/pyudev-py3
respectively. Use vagrant ssh to get a shell on this machine.

Direct testing using tox [http://tox.testrun.org/latest/]

If you are on a Linux system run all tests with tox [http://tox.testrun.org/latest/]. This tool automatically
creates virtualenvs (see virtualenv [http://www.virtualenv.org/en/latest/index.html]), installs all packages required by the
test suite, and runs the tests.

Run all pyudev tests against Python 2.7, Python 3.2 and PyPy:

tox -e py27,py32,pypy

Pass any arguments you want to py.test after two dashes --:

tox -e py27,py32,pypy -- --enable-privileged

Notes

Device samples

Many pyudev tests run against the real device database of the system the tests
are executed on. As testing against the whole database takes a long time,
tests are run against a random sample by default. With the command line
options provided by udev_database you can configure the
size of this sample, or run the tests against a single device or the whole
database.

Privileged tests

Some tests need to execute privileged operations like loading or unloading of
kernel modules to trigger real udev events. These tests are disabled by
default. Refer to privileged for more information on how
to enable these tests and configure them properly.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

 	Testsuite documentation

plugins – Testsuite plugins

Plugins to support the pyudev testsuite.

The following plugins are provided and enabled:

privileged – Privileged operations

Support privileged operations to trigger real udev events.

This plugin adds load_dummy() and unload_dummy() to the
pytest namespace.

Command line options

The plugin adds the following command line options to py.test:

	
--enable-privileged

	Enable privileged tests. You’ll need to have sudo configured
correctly in order to run tests with this option.

Configuration

In order to execute these tests without failure, you need to configure sudo
to allow the user that executes the test to run the following commands:

	modprobe dummy

	modprobe -r dummy

To do so, create a file /etc/sudoers.d/20pyudev-tests with the following
content:

me ALL = (root) NOPASSWD: /sbin/modprobe dummy, /sbin/modprobe -r dummy

Replace me with your actual user name. NOPASSWD: tells sudo
not to ask for a password when executing these commands. This is simply for
the sake of convenience and to allow unattended test execution. Remove this
word if you want to be asked for a password.

Make sure to change the owner and group to root:root and the permissions of
this file to 440 afterwards, other sudo will refuse to load the
file. Also check the file with visudo to prevent syntactic errors:

$ chown root:root /etc/sudoers.d/20pyudev-tests
$ chmod 440 /etc/sudoers.d/20pyudev-tests
$ visudo -c -f /etc/sudoers.d/20pyudev-tests

pytest namespace

The plugin adds the following functions to the pytest namespace:

	
plugins.privileged.load_dummy()

	Load the dummy module.

If privileged tests are disabled, the current test is skipped.

	
plugins.privileged.unload_dummy()

	Unload the dummy module.

If privileged tests are disabled, the current test is skipped.

fake_monitor – A fake Monitor

Provide a fake Monitor.

This fake monitor allows to trigger arbitrary events. Use this class to
test class building upon monitor without the need to rely on real events
generated by privileged operations as provided by the
privileged plugin.

	
class plugins.fake_monitor.FakeMonitor(device_to_emit)

	A fake Monitor which allows you to trigger arbitrary
events.

This fake monitor implements the complete Monitor
interface and works on real file descriptors so that you can
select() [http://docs.python.org/library/select.html#select.select] the monitor.

	
close()

	Close sockets acquired by this monitor.

	
trigger_event()

	Trigger an event on clients of this monitor.

Funcargs

The plugin provides the following funcargs [http://pytest.org/latest/fixture.html#funcargs]:

	
plugins.fake_monitor.fake_monitor(request)

	Return a FakeMonitor, which emits the platform device as returned by
the fake_monitor_device funcarg on all triggered actions.

Warning

To use this funcarg, you have to provide the fake_monitor_device
funcarg!

mock_libudev – Mock calls to libudev

Plugin to mock calls to libudev.

This plugin adds libudev_list() to the pytest namespace.

	
plugins.mock_libudev.libudev_list(function, items)

	Mock a libudev linked list:

with pytest.libudev_list(device._libudev, 'udev_device_get_tag_list_entry', ['foo', 'bar']):
 assert list(device.tags) == ['foo', 'bar']

function is a string containing the name of the libudev function that
returns the list. items is an iterable yielding items which shall be
returned by the mocked list function. An item in items can either be a
tuple with two components, where the first component is the item name, and
the second the item value, or a single element, which is the item name.
The item value is None in this case.

travis – Support for Travis CI

Support for Travis CI.

Test markers

	
pytest.mark.not_on_travis

	Do not run the decorated test on Travis CI:

@pytest.mark.not_on_travis
def test_foo():
 assert True

test_foo will not be run on Travis CI.

pytest namespace

The plugin adds the following functions to the pytest namespace:

	
plugins.travis.is_on_travis_ci()

	Determine whether the tests run on Travis CI.

Return True, if so, or False otherwise.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

pyudev Users

If you are using pyudev and would like the world to know how and why, here is
the place. Just submit a PR with an addition to the documentation, something
like:

Choice of information about yourself.

What you are doing with pyudev and why it beats the alternatives.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyudev 0.18.1 documentation

Changelog

0.18.1 (Dec 18, 2015)

	Restore raising KeyError by Attributes.as* methods when attribute not found.

	Explicitly require six module.

0.18 (Dec 1, 2015)

	DeviceNotFoundError is no longer a subtype of LookupError

	Added support for pyqt5 monitor observer

	Added discover module, which looks up a device on limited information

	Attributes class no longer extends Mapping, extends object instead

	Attributes class no longer inherits [] operator, Mapping methods

	Attributes class objects are no longer iterable

	Attributes.available_attributes property added

	Attributes.get() method, with usual semantics, defined

	Device.from_* methods are deprecated, uses Devices.from_* methods instead

	Device.from_device_file() now raises DeviceNotFoundByFileError

	Device.from_device_number() now raises DeviceNotFoundByNumberError

	Devices.from_interface_index() method added

	Devices.from_kernel_device() method added

	Numerous testing infrastructure changes

0.17 (Aug 26, 2015)

	#52: Remove global libudev object

	#57: Really start the monitor on pyudev.Monitor.poll()

	#60: Do not use select.select() to avoid hitting its file descriptor
limit

	#58: Force non-blocking IO in pyudev.Monitor to avoid blocking on
receiving the device

	#63: Set proper flags on pipe fds.

	#65: Handle irregular polling events properly.

	#50: Add pyudev.wx.MonitorObserver and deprecate
pyudev.wx.WxUDevMonitorObserver

	#50: Add pyudev.glib.MonitorObserver and deprecate
pyudev.glib.GUDevMonitorObserver

	#50: Add pyudev.pyqt4.MonitorObserver and deprecate
pyudev.pyqt4.QUDevMonitorObserver

	#50: Add pyudev.pyside.MonitorObserver and deprecate
pyudev.pyside.QUDevMonitorObserver

	Add a wrapper function to retry interruptible system calls.

0.16.1 (Aug 02, 2012)

	#53: Fix source distribution

	#54: Fix typo in test

0.16 (Jul 25, 2012)

	Remove pyudev.Monitor.from_socket().

	Deprecate pyudev.Device.traverse() in favor of
pyudev.Device.ancestors.

	#47: Deprecate pyudev.Monitor.receive_device() in favor of
pyudev.Monitor.poll.

	#47: Deprecate pyudev.Monitor.enable_receiving in favor of
pyudev.Monitor.start.

	#47: Deprecate pyudev.Monitor.__iter__ in favor of explicit looping or
pyudev.MonitorObserver.

	#49: Deprecate event_handler to pyudev.MonitorObserver in favour
of callback argument.

	#46: Continuously test pyudev on Travis-CI.

	Add pyudev.Device.ancestors.

	Add pyudev.Device.action.

	#10: Add pyudev.Device.sequence_number.

	#47: Add pyudev.Monitor.poll().

	#47: Add pyudev.Monitor.started.

	#49: Add callback argument to pyudev.Monitor.

	pyudev.Monitor.start() can be called repeatedly.

	#45: Get rid of 2to3

	#43: Fix test failures on Python 2.6

	Fix signature in declaration of udev_monitor_set_receive_buffer_size.

	#44: Test wrapped signatures with help of gccxml.

	Fix compatibility with udev 183 and newer in pyudev.Context.

	pyudev.MonitorObserver.stop() can be called from the observer thread.

0.15 (Mar 1, 2012)

	#20: Add remove_filter().

	#40: Add user guide to the documentation.

	#39: Add pyudev.Device.from_device_file().

	errno.EINVAL [http://docs.python.org/library/errno.html#errno.EINVAL] from underlying libudev functions causes
ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] instead of EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError].

	pyudev.MonitorObserver calls
pyudev.Monitor.enable_receiving() when started.

	#20: pyudev.Monitor.filter_by() and
pyudev.Monitor.filter_by_tag() can be called after
pyudev.Monitor.enable_receiving().

0.14 (Feb 10, 2012)

	Host documentation at http://pyudev.readthedocs.org (thanks to the
readthedocs.org team for this service)

	#37: Add pyudev.wx.WxUDevMonitorObserver for wxPython (thanks to
Tobias Eberle).

	Add pyudev.MonitorObserver.

	Add pyudev.glib.GUDevMonitorObserver.enabled,
pyudev.pyqt4.QUDevMonitorObserver.enabled and
pyudev.pyside.QUDevMonitorObserver.enabled.

0.13 (Nov 4, 2011)

	#36: Add pyudev.Monitor.set_receive_buffer_size() (thanks to Rémi
Rérolle).

	Add pyudev.Enumerator.match_parent().

	Add parent keyword argument to pyudev.Enumerator.match().

	#31: Add pyudev.Enumerator.match_attribute().

	Add nomatch argument to pyudev.Enumerator.match_subsystem() and
pyudev.Enumerator.match_attribute().

	Remove pyudev.Enumerator.match_children() in favour of
pyudev.Enumerator.match_parent().

	#34: pyudev.Device.tags returns a pyudev.Tags object.

	pyudev.Device.children requires udev version 172 now

0.12 (Aug 31, 2011)

	#32: Fix memory leak.

	#33: Fix Python 3 support for pyudev.glib.

	Fix license header in pyudev._compat.

0.11 (Jun 26, 2011)

	#30: Add pyudev.Device.sys_number.

	#29: Add pyudev.Device.from_device_number()

	#29: Add pyudev.Device.device_number.

	Support PyPy.

0.10 (Apr 20, 2011)

	Add pyudev.__version_info__

	Add pyudev.Device.device_type

	pyudev.Context, pyudev.Enumerator, pyudev.Device
and pyudev.Monitor can directly be passed to
ctypes [http://docs.python.org/library/ctypes.html#module-ctypes]-wrapped functions.

	#24: Add pyudev.Context.run_path.

0.9 (Mar 09, 2011)

	#21: Add pyudev.Device.find_parent().

	#22: Add pyudev.Monitor.filter_by_tag().

	Add pyudev.Context.log_priority.

	Improve error reporting, if libudev is missing.

0.8 (Jan 08, 2011)

	#16: Add pyudev.Enumerator.match().

	Add keyword arguments to pyudev.Context.list_devices().

	#19: Add pyudev.Enumerator.match_sys_name().

	#18: Add pyudev.udev_version().

	#17: Add pyudev.Device.is_initialized.

	#17: Add pyudev.Device.time_since_initialized.

	#17: Add pyudev.Enumerator.match_is_initialized()

	Fix support for earlier releases of udev.

	Document minimum udev version for all affected attributes.

0.7 (Nov 15, 2010)

	#15: Add pyudev.glib.GUDevMonitorObserver.

0.6 (Oct 03, 2010)

	#8: Add pyudev.Device.tags.

	#8: Add pyudev.Enumerator.match_tag().

	#11: Add pyudev.Device.from_environment()

	#5: Add pyudev.pyside

	#14: Remove apipkg [http://pypi.python.org/pypi/apipkg/] dependency.

	#14: Require explicit import of pyudev.pyqt4.

	Fix licence headers in source files.

0.5 (Sep 06, 2010)

	Support Python 3.

	#6: Add pyudev.Device.attributes (thanks to Daniel Lazzari).

	#6: Add pyudev.Attributes (thanks to Daniel Lazzari).

	#7: pyudev.Device.context and pyudev.Monitor.context are
part of the public API.

	#9: Add pyudev.Device.driver.

	#12: Add pyudev.Device.from_name().

	Rename pyudev.NoSuchDeviceError to pyudev.DeviceNotFoundError.

	pyudev.Device.from_sys_path() raises
pyudev.DeviceNotFoundAtPathError.

	#13: Fix AttributeError [http://docs.python.org/library/exceptions.html#exceptions.AttributeError] in
pyudev.Device.device_node.

	Improve and extend documentation.

	Add more tests.

0.4 (Aug 23, 2010)

API changes

	#3: Rename udev to pyudev.

	#3: Rename qudev to pyudev.pyqt4.

	Add pyudev.Device.from_path().

	pyudev.Device.from_sys_path() raises pyudev.NoSuchDeviceError.

	pyudev.Monitor.receive_device() raises
EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError].

	errno, strerror and filename attributes of
EnvironmentError [http://docs.python.org/library/exceptions.html#exceptions.EnvironmentError] exceptions have meaningful content.

	Fix NameError [http://docs.python.org/library/exceptions.html#exceptions.NameError] in pyudev.Monitor.from_socket()

	subsystem argument to pyudev.Monitor.filter_by() is mandatory.

	Delete underlying C objects if pyudev.Device is garbage-collected.

	Fix broken signal emitting in pyudev.pyqt4.QUDevMonitorObserver.

0.3 (Jul 28, 2010)

	#1: Fix documentation to reflect the actual behaviour of the underlying
API

	Raise TypeError [http://docs.python.org/library/exceptions.html#exceptions.TypeError] if udev.Device are compared with
>, >=, < or <=.

	Add udev.Enumerator.match_children().

	Add udev.Device.children.

	Add qudev.QUDevMonitorObserver.deviceChanged().

	Add qudev.QUDevMonitorObserver.deviceMoved().

0.2 (Jun 28, 2010)

	Add udev.Monitor.

	Add udev.Device.asbool().

	Add udev.Device.asint().

	Remove type magic in udev.Device.__getitem__().

	Add qudev.

0.1 (May 03, 2010)

	Initial release.

	Add udev.Context.

	Add udev.Device.

	Add udev.Enumerator.

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyudev 0.18.1 documentation

Licencing

		 GNU LESSER GENERAL PUBLIC LICENSE
		 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

			 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	pyudev 0.18.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 plugins	

 	
 	
 plugins.fake_monitor	

 	
 	
 plugins.mock_libudev	

 	
 	
 plugins.privileged	

 	
 	
 plugins.travis	

 	[image: -]
 	
 pyudev (Linux)	
 libudev bindings

 	
 	
 pyudev.glib (Linux)	
 Glib integration

 	
 	
 pyudev.wx (Linux)	
 wxWidgets integration

 Copyright 2010, 2011 Sebastian Wiesner.
 Created using Sphinx 1.3.1.

 Index

 Navigation

 	
 index

 	
 modules |

 	pyudev 0.18.1 documentation

Index

 Symbols
 | _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

Symbols

 	

 	
 --enable-privileged

 	

 	py.test command line option

_

 	

 	__contains__() (pyudev.Tags method)

 	__getitem__() (pyudev.Device method)

 	__init__() (pyudev.Context method)

 	

 	(pyudev.MonitorObserver method)

 	__iter__() (pyudev.Device method)

 	

 	(pyudev.Enumerator method)

 	(pyudev.Monitor method)

 	(pyudev.Tags method)

 	

 	__len__() (pyudev.Device method)

 	__version__ (in module pyudev)

 	__version_info__ (in module pyudev)

A

 	

 	action (pyudev.Device attribute)

 	

 	(pyudev.wx.DeviceEvent attribute)

 	ancestors (pyudev.Device attribute)

 	asbool() (pyudev.Attributes method)

 	

 	(pyudev.Device method)

 	asint() (pyudev.Attributes method)

 	

 	(pyudev.Device method)

 	

 	asstring() (pyudev.Attributes method)

 	Attributes (class in pyudev)

 	attributes (pyudev.Device attribute)

C

 	

 	children (pyudev.Device attribute)

 	close() (plugins.fake_monitor.FakeMonitor method)

 	

 	Context (class in pyudev)

 	context (pyudev.Device attribute)

 	

 	(pyudev.Monitor attribute)

D

 	

 	Device (class in pyudev)

 	device (pyudev.Attributes attribute)

 	

 	(pyudev.wx.DeviceAddedEvent attribute)

 	(pyudev.wx.DeviceEvent attribute)

 	device_links (pyudev.Device attribute)

 	device_node (pyudev.Device attribute)

 	device_number (pyudev.Device attribute)

 	

 	(pyudev.DeviceNotFoundByNumberError attribute)

 	device_path (pyudev.Context attribute)

 	

 	(pyudev.Device attribute)

 	device_type (pyudev.Device attribute)

 	

 	(pyudev.DeviceNotFoundByNumberError attribute)

 	DeviceAddedEvent (class in pyudev.wx)

 	DeviceChangedEvent (class in pyudev.wx)

 	DeviceEvent (class in pyu